Chem. Ber. 104, 228-247 (1971)

Albrecht Mannschreck und Ludger Ernst

Protonenresonanz-Untersuchungen zur inneren Rotation, VIII¹⁾

Konformations analyse $\alpha.\alpha.o.o'$ -tetrasubstituierter Toluole mittels magnetischer Kern resonanz und halbempirischer Energieberechnung

Aus dem Institut für Organische Chemie der Universität Heidelberg

(Eingegangen am 11. September 1970)

¹H-NMR-Spektren sowie halbempirische Berechnungen von Spannungsenergien zeigen, daß das Toluol-Derivat 3 im Grundzustand die Konformation a (R = CH₃) einnimmt, in der das α -Methinproton eine der α -Methylgruppen verdeckt. Dementsprechend wurden bei den dargestellten Toluolen 15, 16, 17, 18 und 19 mit zwei ungleichen o- oder m-Substituenten jeweils zwei Rotamere, z.B. 15E und 15Z, nachgewiesen, deren gemessene Gleichgewichtsverhältnisse (Tab. 2) mit den Ergebnissen der Rechnungen an 15 und 16 gut übereinstimmen. – Die freien Enthalpien der Aktivierung ΔG_{c}^{\pm} für die Rotation um die C_a-Aryl-Bindung liegen im Bereich < 7.5–15 kcal/Mol (Tabb. 1 und 2). Derartige Schwellen ließen sich durch Berechnungen an 3, 15 und 16 mit ausreichender Genauigkeit wiedergeben, sofern die C_{α} -Aryl-Bindungslänge und die Valenzwinkel als *flexibel* angenommen, d.h. für jede Rotationslage optimiert wurden. Konformationen des Typus **d**, in denen die C_{α} -H-Valenz zum Benzolring senkrecht steht, ergaben sich dabei als Übergangszustände der C_{α} -Aryl-Rotation; die Potentialkurven für diesen Vorgang sind in den Abbildd. 3 und 4 dargestellt. Rechnungen, die eine starre Molekülgeometrie voraussetzen, liefern dagegen fälschlich die Konformation c als Übergangszustand und erbringen Schwellen, die weit höher sind als die gemessenen.

Proton Magnetic Resonance Studies of Internal Rotation, VIII¹⁾

Conformational Analysis of $\alpha.\alpha.o.o'$ -tetrasubstituted Toluenes by Means of Nuclear Magnetic Resonance and Semi-empirical Energy Calculations

¹H n.m.r. spectra and semi-empirical calculations of strain energies have shown that the ground state of the toluene derivative **3** is represented by conformation **a** (R = CH₃), the α -methine proton of which eclipses one of the *o*-methyl groups. Accordingly, the existence of two rotamers, *e.g.* **15E** and **15Z**, was demonstrated in the case of the toluenes **15**, **16**, **17**, **18**, and **19** synthesized with two unequal *o*- or *m*-substituents. The measured equilibrium ratios of rotamers (Table 2) are in good agreement with the results of the calculations for **15** and **16**. – The free enthalpies of activation ΔG_c^{\pm} for rotation about the C_{α} -aryl bond vary from <7.5 to 15 kcal/mole (Tables 1 and 2). Barriers of this kind were reproduced with sufficient accuracy by calculations for **3**, **15**, and **16** if the C_{α} -aryl bond length and the bond angles were assumed to be *flexible*, *i.e.*, if they were optimized for each rotational arrangement. The transition state turned out to be a conformation of type **d**, the C_{α} -H bond of which

VII. Mitteil.: A. Mannschreck, L. Ernst und E. Keck, Angew. Chem. 82, 840 (1970); Angew. Chem. internat. Edit. 9, 806 (1970).

is arranged perpendicular to the benzene ring; potential energy curves for C_{α} -aryl rotation are given in Fig. 3 and 4. Calculations presupposing a *rigid* molecular geometry erroneously result in conformation c as the transition state and yield barriers which are much higher than the measured ones.

Die bei der Rotation um $sp^3 - sp^3$ - oder $sp^2 - sp^2$ -Bindungen günstigen Konformationen wurden in experimenteller und theoretischer Hinsicht weit ausführlicher untersucht als die Verhältnisse an $sp^2 - sp^3$ -Valenzen²⁾. Derartige Konformationen weisen bei Verbindungen des Typus 1 und 2 eine besonders hohe Lebensdauer auf und sind deshalb NMR-spektroskopisch erfaßbar, was sich erstmals für 9-Mesityl-fluoren³⁾, das man als substituiertes Toluol 1 auffassen kann, und für *N.N*-Dibenzyl-anilinium-Ionen⁴⁾ 2 zeigen ließ. An einfacheren Toluolen, die in den *ortho*-Stellungen symmetrisch substituiert sind (1, R¹ = R² = CH₃), sollte nun der unbekannte relative Energieinhalt der ausgezeichneten Konformationen **a**, **b**, **c** und **d** ermittelt, d. h. die vollständige Potentialkurve für die $sp^2 - sp^3$ -Rotation aufgestellt werden, wobei besonders die Struktur des Grund- und des Übergangszustandes interessierte. Im Anschluß daran sollten sich die analogen Fragen auch für unsymmetrisch substituierte Derivate (1, R¹ \neq R²) beantworten lassen.

Protonenresonanz-Ergebnisse für Toluole mit zwei gleichen o-Substituenten

3 zeigt bei -60° für die beiden *o*-Methylgruppen *zwei* Signale (Abbild. 1), die durch ihre Koaleszenz bei $T_c = -35^{\circ}$ (Aceton-d₆) unter Ausbildung *eines* Singuletts leicht von der *p*-Methyl-Absorption zu unterscheiden sind. Das α -Methyl-Dublett (J = 7 Hz) ist dagegen bei -60° weder in CS₂ noch in Aceton-d₆ als Lösungsmittel weiter aufgespalten oder verbreitert. Diese Befunde lassen sich nicht mit der Konformation **d** (R = CH₃) für den Grundzustand vereinbaren, da in dieser die *o*-CH₃-

²⁾ J. P. Lowe in A. Streitwieser und R. W. Taft (Hrsg.), Progress in Physical Organic Chemistry, Bd. 6, S. 1, Interscience Publishers, New York 1968.

³⁾ E. A. Chandross und C. F. Sheley jr., J. Amer. chem. Soc. 90, 4345 (1968).

⁴⁾ A. Mannschreck und H. Münsch, Tetrahedron Letters [London] 1968, 3227.

Abbild. 1. NMR-Signale der aliphatischen Protonen von 3 in CS2

Gruppen enantiotop sind. Konformation **c** scheidet ebenfalls aus, da sie diastereotope α -CH₃-Reste erfordert. In Frage kommen dagegen **a** und **b**⁵, letztere jedoch nur, wenn zusätzlich eine bei -60° im Sinne der NMR-Zeitskala rasche Teilrotation **b** \Rightarrow **b**' angenommen wird, welche die α -Methylgruppen im Mittel in dieselbe mole-kulare Umgebung bringt.

Die beobachtete Koaleszenz ist auf eine Rotation um die C_{α} -Aryl-Bindung in 3 zurückzuführen, welche bei höherer Temperatur (Abbild. 1) die Registrierung beider *o*-Methylgruppen in a bzw. in $b \Rightarrow b'$ in Form eines einzigen Signals bewirkt. Die Geschwindigkeitskonstante k_c dieses Vorgangs bei der Aufspaltungstemperatur $T_c = -35 \pm 3^\circ$ kann leicht ermittelt werden, wobei wegen der kleinen chemischen Verschiebungs-Differenz der beiden o-CH₃-Reste ($\Delta v = 5.2 \pm 0.3$ Hz bei -60° und 60 MHz in Aceton-d₆) die Berücksichtigung⁶) der Eigenbreite ($b_E = 1.8 \pm 0.2$ Hz bei -60°) notwendig ist. Man findet⁶) $k_c =$

⁵⁾ A. Mannschreck und L. Ernst, Tetrahedron Letters [London] 1968, 5939.

⁶⁾ H. Friebolin, H. G. Schmid, S. Kabuß und W. Faißt, Org. Magn. Resonance 1, 147 (1969), S. 150.

9.3 \pm 0.5 sec⁻¹ und berechnet daraus $\Delta G_c^{\pm} = 12.8 \pm 0.2 \text{ kcal/Mol}^{5}$ bei -35° , wobei zunächst ein statistischer Faktor ⁷) Eins verwendet wird, weil die Form der Potentialkurve der C_x-Aryl-Rotation in 3 noch unbekannt ist.

Analoge Ergebnisse erhielten wir für die Toluole 4 bis 14 (Tab. 1), wobei T_c allerdings für 5 und 6 nicht erreicht wurde, so daß sich nur obere Grenzwerte für ΔG_c^+ angeben lassen. Bei einigen Verbindungen spaltet bei niedriger Temperatur auch das Signal für die *m*-Protonen des tetrasubstituierten Benzolringes auf. Die auf diese Weise zugänglichen ΔG_c^+ -Werte stimmten bei 7 ($T_c = -12 \pm 4^\circ$, CS₂, $\nu_0 = 60$ MHz), 10 ($-59 \pm 4^\circ$, CS₂, 60 MHz) und 11 ($-74 \pm 5^\circ$, CS₂, 100 MHz) innerhalb 0.1 kcal/ Mol mit denen in Tab. 1 überein.

Tab. 1.	
H-NMR-Spektroskopische Daten von Tol	uolen
mit gleichen <i>a</i> -Substituenten	

	Rĭ	R²	Lösungs- mittel	τ(ο- CH3)a)	τ(o'- CH3) ^{a)}	τ(C _α -Η)) T	ν ₀ [MHz]	T _c	ΔG_c^* kcal/Mol]
3	CH3	CH ₃	Aceton-d ₆	7.68	7.77	6,68	60°	60	35 ± 3°	12.8
4	$CH_2 - [CH_2]_3$	$-CH_2$	Aceton-d6	7.62	7.74	≈7.1	5 6°	60	-1.5 ± 4.0	°]4.4
5	CH2-[CH2]2	CH ₂	n-Pentan					90	<-120°	<7.5b)
6	- CH2 - CH	2	n-Pentan	···			-	90	< ~ 120°	<7.5b)
7	Cl	Cl	CS ₂	7.38	7.72	3.06	60°	60	$-1 \pm 5^{\circ}$	13.9
8	OCH ₃	C_6H_5	CS ₂	8.16	7.70		94°	100	-83 <u>+</u> 4°	9.2
9	OH	C ₆ H ₅	CS ₂	8.40c)	8.04c)			100		° 9.5
10	SH	C ₆ H ₅	CS_2	8.26	7.62	4.34	70°	60	$-42 \pm 4^{\circ}$	11.4
11	CN	C_6H_5	CS_2	8.05	7.61	4.63	80°	100	$-60 \pm 7^{\circ}$	10.4
12	CH3	C ₆ H ₅	CS ₂	8.23	7.68	5.64	65°	60	-44.5 ± 5.0	° 11.2
13	Cl	C ₆ H ₅	CS ₂	8.23	7.66	3.63	-60°	60	- 43.5 ± 5.0	° 11.4
13	Cl	C ₆ H ₅	Aceton-d ₆	8.13	7.53	3.26	55°	60	-45 ± 5°	11.3
14	Br	C_6H_5	CS ₂	8.20	7.66	3.45	-65°	60	19 ± 4°	12.7

T: Temperatur, bei der die 7-Werte der scharfen Signale gemessen wurden.

v₀: Senderfrequenz des jeweiligen Spektrometers.

Tc: Aufspaltungstemperatur für die o- und o'-CH3-Signale.

 ΔG_c^{\pm} : Freie Enthalpie der Aktivierung bei T_c (± 0.2 bis ± 0.3 kcal/Mol).

a) Die Zuordnungen der o- und o'-CH₃-Signale beruhen bei 3, 4 und 7 auf einem Vergleich mit 15E und 15Z (s. unten) und bei 8 bis 14 auf der Abschätzung der Einflüsse der diamagnetischen Anisotropie des C₆H₅-Restes.

b) Berechnet unter der Annahme, daß das *o*-CH₃-Signal unterhalb – 120° mit $\Delta \tau = 0.1$ aufspaltet. Auch in CS₂ als Lösungsmittel findet man bis –95° keine Aufspaltung.

c) Diese Werte weichen von denen für 8 möglicherweise auf Grund von H-Brücken-Aggregaten ab. Die Temperaturabhängigkeit des mittleren τ-Wertes von 9 ist damit in Einklang: 8.22 (-88°) und 7.89 (+35°).

Protonenresonanz-Ergebnisse von Toluolen mit ungleichen o- oder m-Substituenten

15 wurde aus 5-Chlor-1.3-dimethyl-benzol und Propanol-(2)/ H_2SO_4 gewonnen und enthielt nach gaschromatographischer Reinigung noch 5% 5-Chlor-1.3-dimethyl-2-isopropyl-benzol. 16 stellten wir durch Bromieren von 21 her. Die nach gaschromatographischer Trennung in minimaler Ausbeute erhaltene Probe von 16 enthielt 25% 22 und 5% einer weiteren Beimengung, wodurch jedoch die Messung von 16 nicht gestört wurde. Alle übrigen unbekannten Substanzen dieser Arbeit konnten rein dargestellt werden.

1

⁷⁾ Z. B. F. A. Bovey, Nuclear Magnetic Resonance Spectroscopy, S. 192, Academic Press, New York 1969.

15 zeigt in CS₂ bei -55° zwei Sätze von Signalen im Verhältnis 33: 67 (Abbild. 2), die wir aus folgenden Gründen den zu erwartenden Rotameren 15E bzw. 15Z⁸⁾ zuordnen: Das C_{α}-H-Septett bei $\tau = 6.69$ kommt 15Z zu, in dem das Methinproton dieselbe Umgebung hat wie im *o.o'*-Dimethylderivat 3 mit $\tau = 6.81$. In 15E ist das Methinproton dagegen dem Chloratom benachbart, das offensichtlich durch den Raum eine Entschirmung bewirkt und das C_{α}-H-Septett nach $\tau = 6.18$ verschiebt. Analog wurden die α -Methyl-Dubletts (J = 7 Hz) bei $\tau = 8.74$ und 8.65 (-55°) 15E bzw. 15Z zugeordnet; das Fehlen weiterer Aufspaltungen oder relevanter Verbreiterungen (Abbild. 2) läßt, wie oben für 3 ausgeführt, auf die Äquivalenz der α -Methylgruppen schließen. Auf dem Umweg über die Toluole mit ungleichen *o*-Substituenten lassen sich nun auch die beiden *o*-Methyl-Signale von 3 zuordnen: Die dem Methinproton benachbarte *o*-CH₃-Gruppe in 15Z absorbiert bei höherer Feldstärke ($\tau = 7.72$) als der *o*-Methylrest in 15E; demnach kommt bei 3 das Signal beim höheren τ -Wert (7.82) der *o*'-CH₃-Gruppe in der Nachbarschaft des Methinprotons zu.

⁸⁾ Die Benennung von Isomeren als **E** und **Z**⁹⁾ läßt sich sinngemäß auf die Grundzustände der Toluole mit zwei gleichen α - und verschiedenen o- oder *m*-Substituenten übertragen ¹⁰⁾.

- ¹⁰⁾ L. Ernst, Dissertation, Univ. Heidelberg 1970.
- ¹¹⁾ Die angegebenen Zahlen sind τ -Werte (CS₂, -60° bzw. -55°).

⁹⁾ J. E. Blackwood, C. L. Gladys, K. L. Loening, A. E. Petrarca und J. E. Rush, J. Amer. chem. Soc. 90, 509 (1968).

Abbild. 2. NMR-Signale der aliphatischen Protonen von 15E und 15Z in CS₂. I: α-CH₃-Absorption von 5% 5-Chlor-1.3-dimethyl-2-isopropyl-benzol

Bei Erhöhung der Temperatur koaleszieren durch Beschleunigung der C_{α} -Aryl-Rotation die beiden Sätze von Signalen, z. B. die o-Methyl-Singuletts (Abbild. 2) bei $\tau = 7.63$ (15E) und 7.72 (15Z). Aus $\Delta v = 5.0 \pm 0.3$ Hz (-55° , 60 MHz, CS₂), $b_{\rm E} = 2.8 \pm 0.3$ Hz (-55°) und der Gleichgewichtskonstante $K = [15E]/[15Z] = 0.49 \pm 0.03$ (-55°) findet¹²) man $k_{\rm c/E} = 4.8 \pm 1.7$ sec⁻¹ und $k_{\rm c/Z} = 2.3 \pm 0.8$ sec⁻¹ bei $T_{\rm c} = -28 \pm 3^{\circ}$ und daraus die in Tab. 2 angegebenen $\Delta G_{\rm c}^{\pm}$ -Werte.

Für die Toluole 16E/16Z bis 19E/19Z erhielten wir analoge Ergebnisse (Tab. 2). Da sich die chemischen Verschiebungen der für die Auswertung verwendeten Signale der beiden Rotameren bei Eigenbreiten b_E von rund 2 Hz nur um $\Delta v = 4-6$ Hz (60 MHz) unterschieden, konnten die Prozentgehalte *P* bzw. Gleichgewichtskonstanten *K* nicht durch elektronische Integration ermittelt werden. Deshalb wurde ein Rechenprogramm verfaßt, das eine aus zwei überlappenden *Lorentz*-Kurven bestehende Funktion in ihre Bestandteile zerlegt. Außer *P* bzw. *K* erhielt man dabei geringfügig korrigierte Werte für b_E und Δv bzw. $\Delta \tau$.

¹²⁾ A. Jaeschke, H. Münsch, H. G. Schmid, H. Friebolin und A. Mannschreck, J. molecular Spectroscopy 31, 14 (1969).

		Р	τ(α-CH3)	τ(o-CH ₃)	τ(C _α H)	Т	T _c	ΔG_c^* [kcal/Mol]
15E	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3	33%	8.74	7.63	6.18	550	י טר	13.5
15Z	H_3C $C1$ H_3C $C1$ H_3C $C1$ H_3C $C1$ CH_3	67%	8.65	7.72	6.69		20 <u>-</u> J	13.9
16E	$\overset{H_{3}C}{\underset{H}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset{C}{\overset$	54%	8.58	7.34	5.98		9 4 [°]	14.5
16Z	$\underset{H_{3}C}{\overset{H_{3}C}{\underset{H_{3}C}{\overset{H_{3}C}{\underset{H_{3}}{\overset{H_{3}C}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{3}}{\underset{H_{3}}{\underset{H_{3}}{\overset{H_{3}}{\underset{H_{1}}{H_{1}}{H_{1}}{H_{1}}{H_{1}}{H_{1}}{H_{1}}$	46%	8.50	7.42	6,38	~ 38	~y <u>+</u> +	14.4
17E	H ₃ C H ₃ C	77 %	8.63	7.60	5.90	75°	-13 + 4	14.9a)
17Z	$\underset{\text{H}_3\text{C}}{\overset{\text{H}_3\text{C}}{\underset{\text{H}_3\text{C}}{\overset{\text{C}}{\underset{\text{C}}{\overset{\text{C}}{\underset{\text{C}}{\overset{\text{C}}{\underset{\text{C}}{\overset{\text{C}}{\underset{\text{C}}{\underset{\text{C}}{\overset{\text{C}}{\underset{\text{C}}{\atop{C}}{\underset{\text{C}}{\underset{\text{C}}{\underset{C}}{\underset{\text{C}}{\underset{C}}{\underset{C}}{\underset{\text{C}}{\underset{C}}{\underset{C}{C$	23%	8.52	7.68				14.3a)
18E	H ₃ C CH ₃ H ₃ C CH ₃	21 %	8.61	7.48	5.86	- 68°	45 4°	12.4
18Z	$\underset{H_{3}C}{\overset{H_{3}C}{\underset{H_{3}C}{\overset{H}{\underset{C}}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{}{\underset{H_{3}}{}{\underset{C}{\underset{H_{3}}{}{\underset{C}{\underset{H_{3}}{}{\underset{R_{3}}{}{\underset{C}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{}{\underset{R_{3}}{\underset{R_{3}}{}{\underset{R_{3}}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{\underset{R_{3}}{}}{\underset{R_{3}}{}}{\underset{R_{3}}{\underset{R_{3}}{}}{\underset{R_{3}}{}}{$	79 %	8,50	7.57	6.34		- van	13.0
19E	CH ₃ H CH ₃ H CH ₃ NO ₂	61%			≈7.2	40°	7 5	[4.9 ^{b)}
19Z	CH ₃ NO ₂ HCH ₃ HCH ₃	39 %	-		≈7.2	40° 1	-/ 1 3	14,76)

Tab. 2. ¹ H-NMR-Spektroskopische Daten (60 MHz) von Toluolen mit ungleichen ø	- oder
m-Substituenten. Lösungsmittel: Pyridin-d5/CDCl3 (3:2) für 19E/19Z; CS2 für alle ü	brigen
Verbindungen	

Prozentgehalt $(\pm 2\%)$ des Rotameren E bzw. Z, ermittelt aus den relativen Intensitäten der *o*-CH₃-Signale. Temperatur, bei der die τ - und *P*-Werte an den scharfen Signalen gemessen wurden. Aufspaltungstemperatur für die *o*-CH₃-Signale der Rotameren E und Z. *P*: *T*: *T*c:

 ΔG_c^* : Freie Enthalpie der Aktivierung bei T_c (±0.2 bis ±0.4 kcal/Mol).

a)

Koaleszenz-Messung in Aceton-d₆, Bestimmung von τ und *P* in CS₂ als Lösungsmittel. *P* und *T*_c wurden an den Signalen des *m*-Protons bei $\tau = 3.32$ (19E) und 3.39 (19Z) (Pyridin-d₅/CDCl₃ (3 : 2), -40°) ermittelt. Die o-CH₃-Absorptionen bei $\tau = 7.69$, 7.73, 7.79 und 7.90 konnten nicht zugeordnet b) werden.

Das Verfahren zur Berechnung der Spannungsenergie einer Konformation

Die von Westheimer entwickelte Methode berechnet die Spannungsenergie E einer Konformation durch Addition¹³⁾ der Summe E_1 der Dehnungsenergien der Bindungen, der Summe E_{ω} der Biegungsenergien e_{ω} der Valenzwinkel und der Summe E_n der Wechselwirkungsenergien e_n von Atomen¹⁵⁾, die nicht direkt aneinander gebunden sind^{16, 17)}.

Der Beitrag $E_{\rm l}$ zur Spannungsenergie wurde auf die Dehnung der C_{α}-Aryl-Bindung beschränkt, nachdem sich herausgestellt hatte, daß nicht einmal diese, zweifellos hauptbeteiligte Valenz einen ins Gewicht fallenden Beitrag zu *E* erbringt (s. unten, z. B. Tab. 7). Der Ansatz für $E_{\rm l}$ folgt dem *Hooke*schen Gesetz

$$= 0.5 k_l (l - l_0)^2 \tag{1}$$

 k_l : Dehnungs-Kraftkonstante (648 kcal Mol⁻¹ Å⁻²)¹⁸⁾

l: Länge der C_{α} -Aryl-Bindung

 l_0 : Bindungslänge in "ungedehntem" Zustand (1.494 Å)¹⁹⁾

E

Die Berechnung von *l* durch Optimieren der Geometrie der jeweils zu berechnenden Konformation wird auf S. 237 erläutert.

Dasselbe gilt für ω im analogen Ausdruck für die Biegungsenergie

$$e_{\omega} = 0.5 k_{\omega} (\omega - \omega_0)^2 \tag{2}$$

 k_{ω} : Biegungs-Kraftkonstante (Tab. 3)

- ω: Valenzwinkel in der zu berechnenden Konformation
- $ω_0$: Valenzwinkel in "undeformiertem" Zustand (an den *o*-C-Atomen 120°; an C_α 109.47° oder, soweit bekannt²⁰), geringfügig korrigierte Werte).

Den Beitrag E_{ω} zur Spannungsenergie erhielt man durch Summieren der e_{ω} -Werte aller Winkel am C_{α}-Atom²¹) sowie der Winkel²²) ω_1 und ω_2 (s. Tab. 3, Formel).

- ¹³⁾ Torsionsenergien $e_t = 0.5 e_{t,max} \cdot (1 \pm \cos n\delta)$ dürfen unseres Erachtens im vorliegenden Fall vernachlässigt werden, da sie wegen $e_{t,max} = 0.5$ kcal/Mol für Toluol¹⁴⁾ gegenüber den anderen Beiträgen zu *E* nicht ins Gewicht fallen.
- 14) J. F. Yan, G. Vanderkooi und H. A. Scheraga, J. chem. Physics 49, 2713 (1968).
- ¹⁵⁾ Die Methylgruppe wird hier als *ein* wechselwirkendes Teilchen betrachtet; vgl. l. c. ¹⁶⁾.
- ¹⁶ Übersicht: H. A. Scheraga in V. Gold (Hrsg.), Advances in Physical Organic Chemistry, Bd. 6, S. 103, Academic Press, New York 1968.
- 17) Übersicht: J. E. Williams, P. J. Stang und P. v. R. Schleyer in H. Eyring, C. J. Christensen und H. S. Johnston (Hrsg.), Annual Review of Physical Chemistry, Bd. 19, S. 531, Annual Reviews, Inc., Palo Alto 1968.
- 18) E. L. Eliel, N. L. Allinger, S. J. Angyal und G. A. Morrison, Conformational Analysis, S. 447, Interscience Publishers, New York 1965.
- 19) N. L. Allinger, J. A. Hirsch, M. A. Miller und I. J. Tyminski, J. Amer. chem. Soc. 90, 5773 (1968).
- ²⁰⁾ N. L. Allinger, M. A. Miller, F. A. Van-Catledge und J. A. Hirsch, J. Amer. chem. Soc. 87, 4345 (1967).
- 21) Die beiden in der Formel zu Tab. 3 mit ω₄ bezeichneten Winkel sind nur exakt gleich in den Konformationen mit δ = 0° und 90° für den Fall gleicher *o*-Substituenten und in den Konformationen mit δ = 0° und 180° für den Fall verschiedener *o*-Substituenten. Die Gleichsetzung auch in den anderen Konformationen dient zur Verminderung der Variablenzahl. Die Gestalt der Potentialkurve wird durch diese Näherung nicht verfälscht, da durch eine getrennte Variation der Winkel ω₄ die Konformationen mit δ = 60° und 120° energetisch nur gesenkt werden können, die 90°-Konformation, zumindest in 3 und 23, aber unbeeinflußt bleibt. Dasselbe gilt auch für die beiden Winkel ω₅.
- ²²⁾ Die Kraftkonstanten für ω_1 und ω_2 nach l. c. ²³⁾ beziehen den Energieaufwand für die Deformation des Nachbarwinkels ω_7 bzw. ω_8 ein.
- ²³⁾ K. E. Howlett, J. chem. Soc. [London] 1960, 1055.

Tab. 3. Kraftkonstanten zur Berechnung von Biegungsenergien nach Gleichung (2)

	$k\omega$ [kcal Mol ⁻¹ grad ⁻²]	
$\omega_1, \mathbf{R}' = \mathbf{CH}_3; \omega_2, \mathbf{R}'' = \mathbf{CH}_3$ $\omega_1, \mathbf{R}' = \mathbf{CI}; \omega_2, \mathbf{R}'' = \mathbf{CI}$ $\omega_2, \mathbf{R}'' = \mathbf{Br}$ $\omega_3, \mathbf{R} = \mathbf{CH}_3$ $\omega_4, \mathbf{R} = \mathbf{CI}$ $\omega_5 = \mathbf{CH}_2$	0.0495 22) 0.0474 22) 0.0425 22) 0.0285 24) 0.0351 24) 0.0351 0.0285 24)	
$\omega_5, R=Cl$ $\omega_6, R=CH_3$ $\omega_6, R=Cl$	0.0285 0.0351 ²⁴⁾ 0.0351	

Die Wechselwirkungsenergie zweier Substituenten i und j im Abstand r_{ij} wurde nach dem Lennard-Jones-Potential^{16,17)}

$$e_{\rm n} = f_{\rm ij} \, r_{\rm ij}^{-12} - g_{\rm ij} \, r_{\rm ij}^{-6} \tag{3}$$

die Konstante gij (Tab. 4) nach der Slater-Kirkwood-Gleichung¹⁶⁾

$$g_{ij} = \frac{3 e_0 b \alpha_i \alpha_j}{2 \sqrt{m} \left(\sqrt{\alpha_i/N_i} + \sqrt{\alpha_j/N_j} \right)}$$
(4)

 α_i , α_j : Polarisierbarkeiten von i und j

 N_i , N_j : Effektive Elektronenzahlen von i und j

eo: Elementarladung

m: Elektronenmasse

ermittelt. Die Konstante f_{ij} (Tab. 4) in Gleichung (3) ergibt sich aus der Tatsache, daß die Energie e_n im Abstand $r_i + r_j$, der Summe der van der Waals-Radien, ihr Minimum besitzt¹⁶:

$$f_{ij} = 0.5 g_{ij} (r_i + r_j)^6$$
 (5)

Damit gehen in die Berechnung von e_n nach den Gleichungen (3), (4) und (5) als empirische Größen nur die α -, *N*- und *r*-Werte (Tab. 5) der beiden wechselwirkenden Substituenten sowie deren Abstand r_{ii} ein, der nach Optimierung (s. unten) der

Tab. 4. Konstanten des *Lennard-Jones*-Potentials nach Gleichung (3) für die nicht-bindende Wechselwirkung zweier Teilchen i und j

i	j	<i>f</i> _{ij} · 10 ^{−4} [kcal Mol ^{−1} Å ¹²]	gij [kcal Mol⁻1 Å6]
н	CH ₃	13.37	274
н	Cl	11.21	327
Н	Br	21.72	471
CH3	CH	287.68	1635
CH ₃	Cl	263.96	1992
CH	Br	481.27	2865
Cl	Cl	245.06	2490

²⁴⁾ R. H. Boyd, J. chem. Physics 49, 2574 (1968).

	α · 10 ²⁴ [cm ³]	Ν	(Å]
Н	0.4225)	0.925)	1.20 26)
CH ₃	2.17 25)	8.025)	1.95 25)
Cl	2.28 28)	16.027)	1.77 26)
Br	3.34 28)	21.5 27)	1.9226)

Tab. 5. Polarisierbarkeiten α , effektive Elektronenzahlen N und van der Waals-Radien r zur Berechnung von Wechselwirkungsenergien nach den Gleichungen (3), (4) und (5)

Geometrie der zu berechnenden Konformation mit Hilfe der 1.c.²⁹⁾ angegebenen Gleichungen erhältlich ist. Dabei wurden die folgenden, nicht-optimierten Bindungslängen verwendet: C_{α} -CH₃ 1.54, C_{α} -Cl 1.77, C-H 1.09, C-C (Benzol) 1.40, o-C-CH₃ 1.51, o-C-Cl 1.71 und o-C-Br 1.84 Å.

Zur Ermittlung der Summe E_n wurden die Wechselwirkungen e_n zwischen jedem o-Substituenten und dem benachbarten *m*-Proton einerseits sowie den drei Resten CH₃, CH₃ und H bzw. Cl, Cl und H an C_{α} andererseits berücksichtigt. Wechselwirkungen über größere Abstände etwa zwischen den *m*-Protonen und den C_{α}-Substituenten, konnten vernachlässigt werden.

Die Geometrie einer zu berechnenden Konformation wurde erhalten, indem man die Bindungslänge / und die Valenzwinkel³⁰⁾ in Schritten von 0.005 Å bzw. 1° variierte und die *E*-Werte aller sich daraus ergebenden Kombinationen miteinander verglich. Die Kombination mit der niedrigsten Energie wurde als Geometrie der betreffenden Konformation angesehen.

Ergebnisse von Berechnungen der Spannungsenergie

Die ausgezeichneten Konformationen von 3, nämlich **a**, **b**, **c** und **d** ($\mathbf{R} = CH_3$), entsprechen in den Tabb. 6 und 7 Interplanarwinkeln von 0°, 30°, 60° und 90°. Darüber hinaus wurden weitere Winkel zwischen 0° und 30° sowie zwischen 60° und 90°, jeweils in Schritten von 5°, verwendet, weil zunächst auch *andere* als die 4 angegebenen Konformationen als Grund- bzw. Übergangszustand der C_{α} -Aryl-Rotation in Frage kamen. Für diese δ -Werte ergaben sich jedoch durchweg Spannungsenergien, die *zwischen* den Werten für die entsprechenden ausgezeichneten Konformationen (Tab. 7) lagen, weshalb die Potentialkurve der Rotation (Abbild. 3) eine sehr einfache Gestalt annimmt.

²⁵⁾ K. D. Gibson und H. A. Scheraga, Proc. nat. Acad. Sci. USA 58, 420 (1967).

²⁶⁾ A. Bondi, J. physic. Chem. 68, 441 (1964).

²⁷⁾ Vgl. R. A. Scott und H. A. Scheraga, J. chem. Physics 42, 2209 (1965).

²⁸⁾ J. A. A. Ketelaar, Chemische Konstitution, S. 82, Vieweg, Braunschweig 1964.

²⁹⁾ J. B. Hendrickson, J. Amer. chem. Soc. 83, 4537 (1961).

³⁰⁾ Folgende Zusammenhänge zwischen den 6 Winkeln (Tab. 3, Formel) am C_{α}-Atom wurden verwendet: $\omega_6 = 170.9^{\circ} - 0.535 \omega_4$; $\omega_5 = \omega_6 - 4.0^{\circ}$; $\omega_3 = f(\omega_4, \omega_5, \omega_6)$, wobei die Funktion f aus l. c.²⁹⁾ entnommen wurde. Näheres l. c.¹⁰⁾. Damit hängen alle 5 übrigen Winkel direkt von ω_4 ab. Es genügte also, ω_1 , ω_2 , ω_4 und *l* unabhängig voneinander zu variieren.

Abbild. 3. Berechnete Potentialkurve für die Rotation um die C α -Aryl-Bindung in 1.3.5-Trimethyl-2-isopropyl-benzol (3). Die Spannungsenergie *E* ist gegen den Interplanarwinkel δ aufgetragen

Dasselbe gilt für 23, das wir in die Rechnungen einbezogen, weil die Rotationsschwelle in diesem Molekül von *Schaefer* und Mitarbeitern³¹⁾ sehr genau gemessen worden war.

Bei 15 und 16 mußten Interplanarwinkel von $0-180^{\circ}$ (Tab. 8) gewählt werden, wobei zusätzliche Berechnungen in der Umgebung von 0, 90 und 180° die Potentialkurven (z. B. Abbild. 4) absicherten.

Die Verwendung anderer Ansätze für E_n und E_{ω} , nämlich von Buckingham-Potentialen²⁷⁾ anstelle von Gleichung (3) oder des Ausdrucks von Allinger³²⁾ statt Gleichung (2), ergab keine nennenswerten Änderungen von E gegenüber den in den Tabellen genannten Werten.

³¹⁾ B. J. Fuhr, B. W. Goodwin, H. M. Hutton und T. Schaefer, Canad. J. Chem. 48, 1558 (1970).

³²⁾ N. L. Allinger, J. A. Hirsch, M. A. Miller, I. J. Tyminski und F. A. Van-Catledge, J. Amer. chem. Soc. 90, 1199 (1968).

Tab. 6. Berechnete C_{σ} -Aryl-Bindungslänge l [Å], Valenzwinkel ω_1 bis ω_6 [°] und nichtbindende Wechselwirkungsenergien e_1 bis e_8 [kcal/Mol] für verschiedene Interplanarwinkel δ in 3. Näheres s. Text

Abbild. 4. Berechnete Potentialkurve für die Rotation um die C_{α} -Aryl-Bindung in 5-Chlor-1.3-dimethyl-4-isopropyl-benzol (15E und 15Z). Die Spannungsenergie E ist gegen den Interplanarwinkel δ aufgetragen

Tab. 7. Berechnete Spannungsenergien E und deren Anteile E_n , E_l und E_{ω} [kcal/Mol] für verschiedene Interplanarwinkel δ in Toluolen mit gleichen o-Substituenten

н

	R₂Ç	H-C-R	3: R = CH ₃ 23: R = CI	RR			
	δ	En	E'n	El	E _ω	E	
	0 °	4.0	9	0.2	1.5	5.7	
3	30 °	6.1	38	0.6	3.7	10.4	
	60°	9.0	110	0.8	7.8	17.6	
	90°	11.4	74	1.4	8.8	21.6	
	0°	0.8	2	0.1	0.9	0.2	
23	30°	1.1	35	0.2	3.6	4.9	
	60°	3.5	153	0.5	6.9	10.9	
	90°	5.0	71	0.8	7.6	13.4	

 E_n : Summe der nicht-bindenden Wechselwirkungsenergien für den Fall der Optimierung der C_{α} – Aryl-Bindungs-länge und der Valenzwinkel in Abhängigkeit von δ . Vgl. Tab. 6.

 E'_n : Dasselbe für den Fall des Konstanthaltens aller Bindungslängen und Valenzwinkel bei Änderung von δ . E_1 : Dehnungsenergie der C_{α} – Aryl-Bindung. E_{ω} : Summe der Biegungsenergien der Valenzwinkel.

R

Tab. 8. Berechnete Spannungsenergien E und deren Anteile E_n, E_l und E_{ω} [kcal/Mol] für verschiedene Interplanarwinkel δ in Toluolen mit ungleichen o-Substituenten

	(CH ₃) ₂ ^C _α H- CH ₃ CH ₃	15: Hal = 0 16 : Hal = I	Cl, R = CH ₃ Br, R = NO ₂	Hal∙∙•CH ₃ -	Ч. СН ₃	
	δ	En	E'_{n}	E_l	E_{ω}	E
	0° (≙15Z)	2.2	4	0.1	1.1	3.4
	30°	3.9	39	0.3	3.1	7.3
	60°	6.5	137	0.7	6.5	13.7
15	90 °	9.4	89	1.2	7.8	18.4 ^{a)}
	120°	7.5	154	0.8	7.6	15.9
	1 50°	4.5	50	0.4	3.8	8.7
	180° (≙15E)	2.4	9	0.1	1.2	3.7
	0° (≙16Z)	2.7	10	0.2	1.5	4.4
	30°	4.5	68	0.3	4.3	9.1
	60°	7.4	233	0.7	8.1	16.2
16	90 °	10.6	116	1.4	8.5	20.5ы)
	120°	8.0	155	0.9	7.9	16.8
	150°	4.7	50	0.4	4.1	9.2
	180° (≙16E)	2.8	10	0.2	1.4	4.4

 E_n : Summe der nicht-bindenden Wechselwirkungsenergien für den Fall der Optimierung der C_{α} – Aryl-Bindungslänge und der Valenzwinkel in Abhängigkeit von \delta.

 E'_n : Dasselbe für den Fall des Konstanthaltens aller Bindungslängen und Valenzwinkel bei Änderung von δ . E_1 : Dehnungsenergie der C_{α} – Aryl-Bindung.

 E_{ω} : Summe der Biegungsenergien der Valenzwinkel. ^{a)} Das Maximum von E beträgt ungefähr 18.5 kon

Das Maximum von *E* beträgt ungefähr 18.5 kcal/Mol bei $\delta = 95^{\circ}$; vgl. Abbild. 4. E = 20.5 kcal/Mol bei $\delta = 90^{\circ}$ entspricht ungefähr dem Maximum. b)

241

Diskussion

Wiederholt ist vermutet worden^{3, 5, 31, 33, 34)}, daß bei Toluolen 1 diejenigen Konformationen am günstigsten seien, in denen das Proton am sp³-Zentrum einen *o*-Substituenten verdeckt. Diese Annahmen basieren im wesentlichen auf den chemischen Verschiebungen oder Kopplungskonstanten des C_{α} --H-Protons, für welche jedoch offensichtlich keine Daten wirklich geeigneter Vergleichsverbindungen vorliegen, die beispielsweise Konformationen des Typus **b** als Grundzustand ausschließen könnten. Dazu ist auch, wie auf S. 230 erläutert, die Betrachtung der Symmetrie in den ¹H-NMR-Spektren nicht in der Lage, obwohl sie **c** und **d** eindeutig nicht als Grundzustände zuläßt⁵⁾. Erst der quantitative Vergleich der *E*-Werte (Tabb. 7 und 8) zeigt eindeutig, daß die Konformationen mit den Interplanarwinkeln 30° bzw. 150° *nicht* die günstigsten sind, was sowohl durch stärkere nicht-bindende Wechselwirkungen E_n als auch durch höhere Biegungsenergien E_{ω} verursacht wird.

Die für 15E und 16E gemessenen %-Gehalte von 33 % bzw. 54% (Tab. 2) werden durch die Rechnungen gut wiedergegeben. Die Differenzen zwischen den berechneten *E*-Werten (Tab. 8) bei $\delta = 0^{\circ}$ und 180° betragen nämlich 0.3 bzw. 0.0 kcal/Mol, woraus man (mit $\Delta S = 0$) Rotameren-Anteile von 33% 15E bzw. 50% 16E erhält. Gleichzeitig warnen die Daten der Tab. 8 vor Versuchen, derart kleine Energiedifferenzen *qualitativ*, etwa unter ausschließlicher Betrachtung von Wirkungsradien, vorauszusagen. – Die extremere Lage des Gleichgewichts bei 17 (77% 17E, Tab. 2) relativ zu 16 (54% 16E) kann man durch einen Stützeffekt der *m*-Isopropylgruppen erklären. Dasselbe gilt für den Vergleich von 4 mit seinem *m*-Nitro-Derivat 19.

Die entsprechenden Rotationsschwellen werden jedoch durch die *m*-Substituenten praktisch nicht angehoben. Der Stützeffekt wirkt sich also offensichtlich auf den Grund- *und* den Übergangszustand aus, während bei den Biphenylen verständlicherweise *nur* der Übergangszustand ungünstiger wird und damit die Rotationsschwellen erhöht.

Bei den nun folgenden Vergleichen von ΔG_c^* -Werten ist Vorsicht geboten, weil sich diese Angaben auf verschiedene Temperaturen beziehen. Die von Null praktisch nicht verschiedene Aktivierungsentropie von **23**³¹⁾ legt jedoch auch für die hier betrachteten Verbindungen einen kleinen $|\Delta S^+|$ -Wert nahe, was einer Temperaturunabhängigkeit von ΔG^+ gleichkommt.

Die Cyclohexylverbindung **4** zeigt eine etwas höhere Rotationsschwelle (14.4 kcal/ Mol, Tab. 1) als das entsprechende Isopropylderivat **3** (12.8 kcal/Mol); wir führen dies auf die größere Starrheit des äquatorial-substituierten Cyclohexanrings im Vergleich zur Isopropylgruppe zurück. Dagegen ist der sehr flexible Cyclopentanring sterisch offenbar nicht in der Lage, die Rotation in **5** wesentlich zu behindern. Für den Cyclopropylrest in **6** gilt auf Grund des $CH_2-C_{\alpha}H-CH_2$ -Winkels von nur 60° Ähnliches. Die beim Ersatz von CH₃ in **3** bzw. von Cl in **7** durch C₆H₅ beobachteten

Chemische Berichte Jahrg. 104

 ³³⁾ P. C. Myhre, J. W. Edmonds und J. D. Kruger, J. Amer. chem. Soc. 88, 2459 (1966);
 T. Schaefer, R. Schwenk, C. J. Macdonald und W. F. Reynolds, Canad. J. Chem. 46, 2187 (1968);
 T. H. Siddall, III und W. E. Stewart, J. org. Chemistry 34, 233 (1969); H. Kessler,
 A. Moosmayer und A. Rieker, Tetrahedron [London] 25, 287 (1969); K. D. Bartle,
 P. M. G. Bavin, D. W. Jones und R. L'Amie, Tetrahedron [London] 26, 911 (1970).

³⁴⁾ Vgl. R. D. Chambers, J. A. Jackson, W. K. R. Musgrave, L. H. Sutcliffe und G. J. T. Tiddy, Tetrahedron [London] 26, 71 (1970).

Erniedrigungen der ΔG_c^{\pm} -Werte für 12 und 13 (Tab. 1) müssen wohl auf eine energetische Anhebung des Grundzustandes in den α -C₆H₅-Verbindungen zurückgeführt werden.

Überraschend ist die merkliche Erhöhung der Schwelle beim Übergang vom Isopropylderivat 3 zur Dichlormethylverbindung 7 (Tab. 1). Dies kann nicht durch die van der Waals-Radien (CH₃ 1.95, Cl 1.77 Å, Tab. 5) und Bindungslängen (C – CH₃ 1.54, C–Cl 1.77 Å) erklärt werden, weil diese für die "seitliche" Wechselwirkung mit einer anderen Gruppe, hier der *o*-Methylgruppe, das Gegenteil bewirken sollten. Diese Erhöhung der Schwelle ist wenig ausgeprägt beim Ersatz von nur einem CH₃-Rest in 12 durch ein Chloratom³⁵ in 13 (Tab. 1); sie ist dagegen sehr groß beim Vergleich von 3 (12.8 kcal/Mol, Aceton-d₆, -35°) mit 23 (15.2 kcal/Mol, Toluol-d₈, -35°)³⁶. Sie findet sich auch in der Reihe der α.2.4.6-tetrasubstituierten Toluole^{10.37)} 24, beim Übergang vom *N.N.*2.6-Tetramethyl-anilinium-Ion (2, R = R¹ = R² = CH₃, R³ = H) (15.9 kcal/Mol, $+26^{\circ}$)⁵ zu den rotameren 6-Chlor-*N.N.*2-trimethyl-

$$\begin{array}{c} C(CH_3)_3 \\ R_{\alpha}^{C}H_2 \\ R_{\alpha}^{I} \end{array} \xrightarrow{-C(CH_3)_3} \\ R' = CH_3, C1 \end{array}$$

anilinium-Ionen (2, $R = R^1 = CH_3$, $R^2 = Cl$, $R^3 = H$) (17.3 bzw. 17.4 kcal/Mol, $+49^{\circ}$)³⁸⁾ sowie bei den analogen Toluolen 3 (Tab. 1) und 15E/15Z (Tab. 2). Diese Beobachtung können wir noch nicht befriedigend erklären.

Aus den Tabb. 7 und 8 kann man entnehmen, daß die berechneten Rotationsschwellen, d.h. $E(\max) - E(\min)$, nicht genau mit den experimentellen Werten (Tabb. 1 und 2) übereinstimmen; man findet vielmehr Abweichungen von 1-3 kcal/Mol. Berücksichtigt man jedoch die theoretischen Unsicherheiten und praktischen Vernachlässigungen derartiger Rechnungen, so kann die gefundene grobe Übereinstimmung als vorläufig befriedigend gelten. Daß die Energiedifferenzen von Rotameren *besser* wiedergegeben werden, dürfte einmal an deren kleinerem Absolutwert liegen; zum anderen werden einige der erwähnten Fehler des Verfahrens bei der Bildung der Energiedifferenz *ähnlicher* Konformation wie **E** und **Z** herausfallen, was beim Vergleich *verschiedenartiger* Spezies wie Grund- und Übergangszustand weniger wahrscheinlich ist.

Was nun den Übergangszustand der Rotation in Toluolen 1 betrifft, so wurden auf Grund von Modellbetrachtungen Konformationen des Typus c (Interplanarwinkel $\delta = 60^{\circ}$ und 120°) vorgeschlagen^{5,34}), in denen der Rest am sp³-Zentrum einen *o*-Substituenten verdeckt. Dasselbe Ergebnis lieferten vorläufige Energieberechnungen³⁹) an **23** und an weiteren halogensubstituierten Toluol-Derivaten, wobei jedoch auf die Optimierung der Molekülgeometrie (s. S. 237) in Abhängigkeit vom Interplanarwinkel verzichtet wurde. Eigene Rechnungen, die ebenfalls eine *starre* Geometrie voraussetzten, ergaben die in den Tabb. 7 und 8 aufgeführten E'_n -Werte, die ebenfalls bei $\delta \approx 60^{\circ}$ und 120° Übergangszustände der Rotation anzeigen und

³⁵⁾ Zur Möglichkeit eines Dissoziations-Inversions-Mechanismus vgl. I. c. 5, 10).

³⁶⁾ Berechnet nach den Angaben l. c.³¹⁾, jedoch unter Verwendung eines statistischen Faktors⁷⁾ Eins, der weiter unten begründet wird.

³⁷⁾ Die Rotationsschwellen für 24, R' = CH₃, wurden ermittelt von C. A. Cupas, J. M. Bollinger und M. Haslanger, J. Amer. chem. Soc. 90, 5502 (1968).

³⁸⁾ E. Keck, Dissertation, Univ. Heidelberg 1970, S. 61. Vgl. l. c. ¹⁾.

³⁹⁾ B. Barber, M. Sc. Thesis, Univ. of Manitoba 1970, S. 66; zitiert 1. c. 31).

Schwellen liefern, die erheblich höher sind als die gemessenen. – Nach Optimierung der C_{α} -Aryl-Bindungslänge und der Valenzwinkel in Abhängigkeit von δ , d.h. bei Annahme einer *flexiblen**) Molekülgeometrie, berechneten wir dagegen Spannungsenergien, die, wie erwähnt, zu realistischen Rotationsschwellen führen. Als ungünstigste Konformation fanden wir dabei den Typus **d** mit einem Interplanarwinkel von 90° (Tab. 7)**) oder nahe 90° (Tab. 8), weil hier die doppelt auftretende Wechselwirkung eines α -Substituenten mit seinem benachbarten *o*-Substituenten überraschenderweise ungünstiger ist als die einfache Wechselwirkung zweier zueinander verdeckt angeordneter Reste in **c**. Im Übergangszustand der Rotation steht also die C_{α} -H-Bindung zum Benzolring senkrecht.

Aus dem Fehlen eines Zwischenprodukts in den Potentialkurven (Abbildd. 3 und 4) folgt schließlich für die Berechnung von ΔG^{\pm} -Werten der statistische Faktor⁷) Eins, welcher in dieser Arbeit zunächst ohne Begründung verwendet worden ist.

Diese Untersuchung wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie gefördert. Wir danken Herrn Prof. Dr. S. Hünig, Würzburg, für wertvolle Hinweise, den Herren Dr. A. Krebs und Dr. E. Keck für ihre Diskussionsbeiträge. Besonderen Dank schulden wir Fräulein J. Lin β und Frau G. Rissmann für ihre präparative und spektroskopische Mitarbeit. Die ¹H-NMR-Spektren bei 90 und 100 MHz wurden aufgenommen von Fräulein G. Taigel, Heidelberg, sowie den Herren Dr. U. Kölle, Lund, H. Landeck, Heidelberg, und H. Rose, Hamburg. Die gaschromatographischen Trennungen verdanken wir Herrn Prof. Dr. G. Köbrich und Frau I. Hesse. Die Rechnungen konnten wir am Rechenzentrum der Universität Heidelberg ausführen.

Beschreibung der Versuche

Allgemeines: Die NMR-Spektren wurden an den Geräten Varian A-60, HA-100 und Bruker HX-4 mit Tetramethylsilan als innerem Standard aufgenommen (τ -Werte). Falls nicht anders vermerkt, lag die Meßtemperatur zwischen 27 und 37°. Zur Methodik der Tieftemperatur-Messungen vgl. l. c.⁴⁰). Die Schmelz- und Siedepunkte sind nicht korrigiert.

1.3.5-Trimethyl-2-isopropyl-benzol (3)⁴¹: NMR (CS₂): 3.42 (H_{Ar}), 6.71 (Methin-H, sept, J = 7 Hz), 7.75 (1- und 3-CH₃), 7.87 (5-CH₃), 8.75 (α -CH₃, d, J = 7 Hz). Versuche, 3 durch direkte Alkylierung von *Mesitylen* mit *Isopropylalkohol*, *Isopropylchlorid* oder *Propen* unter AlCl₃-, H₂SO₄- oder BF₃·H₃PO₄-Katalyse darzustellen, führten zur Bildung isomerer Nebenprodukte, die von 3 nicht abgetrennt werden konnten.

I.3.5-Trimethyl-2-cyclohexyl-benzol (4)⁴²: NMR (CCl₄): 3.37 (H_{Ar}), 7.69 (1- und 3-CH₃), 7.84 (5-CH₃), 7.9–8.9 (Cyclohexyl-H).

^{*)} Anm. b. d. Korr. (7. 12. 70): Auch von anderer Seite wird auf Fehler hingewiesen, die bei Annahme einer "starren Rotation" auftreten können: L. Radom und J. A. Pople, J. Amer. chem. Soc. 92, 4786 (1970).

^{**)} Anm. b. d. Korr. (7. 12. 70): An diesem rechnerischen Befund änderte sich qualitativ nichts, als wir die der Literatur entnommenen k_{ω} -Werte (Tab. 3) aller optimierten Winkel willkürlich erhöhten. Erst bei einer Erhöhung auf den jeweils 32 fachen Betrag ergaben sich für die Konformationen c und d gleiche Spannungsenergien. Unsere Ergebnisse würden also durch möglicherweise unzutreffende k_{ω} -Werte, mindestens in qualitativer Hinsicht, nicht verfälscht werden.

⁴⁰⁾ A. Mannschreck, G. Rissmann, F. Vögtle und D. Wild, Chem. Ber. 100, 335 (1967).

⁴¹⁾ R. Adams und A. Ferretti, J. Amer. chem. Soc. 83, 2559 (1961).

⁴²⁾ E. S. Pokrovskaya und N. A. Shimanko, Doklady Akad. Nauk SSSR 123, 109 (1958), C. A. 53, 6146b (1959).

1.3.5-Trimethyl-2-cyclopentyl-benzol (5)⁴²: NMR (Aceton-d₆): 3.23 (H_{Ar}), 7.70 (1- und 3-CH₃), 7.82 (5-CH₃), 8.0-8.4 (Cyclopentyl-H).

1.3.5-Trimethyl-2-cyclopropyl-benzol (6)⁴³⁾: NMR (CCl₄): 3.33 (H_{Ar}), 7.66 (1- und 3-CH₃), 7.80 (5-CH₃), 8.1-9.7 (Cyclopropyl-H).

1.3.5-Trimethyl-2-dichlormethyl-benzol (7)⁴⁴⁾: Sdp._{0.6} 78 – 80°. NMR (CCl₄): 2.90 (Methin-H), 3.27 (H_{Ar}), 7.50 (1- und 3-CH₃), 7.78 (5-CH₃).

 (\pm) -Methoxy-phenyl-[2.4.6-trimethyl-phenyl]-methan (8): Zur siedenden Lösung von 10.0 g (35 mMol) 14 in 28 ccm Methanol p. a. wurde eine Lösung von 2.0 g (36 mMol) Kaliumhydroxid in Methanol getropft. Nach beendeter Zugabe kochte man die Mischung 1 Stde. unter Rückfluß und beließ sie 24 Stdn. bei Raumtemp. Vom ausgeschiedenen Kaliumbromid wurde abgesaugt, das Filtrat mit Äther und Wasser versetzt, die Äther-Phase abgetrennt und mit Na₂SO₄ getrocknet. Nach Abziehen des Lösungsmittels blieben 7.3 g (88%) eines gelben Öls, $n_{\rm D}^{10}$ 1.5568, zurück, das durch Destillation gereinigt wurde: Sdp._{0.1} 127–130°. Das Produkt erstarrte nach einigen Tagen zu farblosen Kristallen, Schmp. 27–29°. NMR (CCl₄): 2.84 (Phenyl-H), 3.25 (H_{Ar}), 4.27 (Methin-H), 6.71 (OCH₃), 7.77 (4-CH₃), 7.83 (2- und 6-CH₃).

C17H20O (240.4) Ber. C 84.95 H 8.39 OCH3 12.91 Gef. C 85.02 H 8.18 OCH3 12.60

 (\pm) -Hydroxy-phenyl-[2.4.6-trimethyl-phenyl]-methan (9)⁴⁵): Schmp. 32-34.5°. NMR (CS₂): 2.91 (Phenyl-H), 3.31 (H_{Ar}), 3.89 (Methin-H), 7.80 (4-CH₃), 7.89 (2- und 6-CH₃), 8.10 (OH).

(\pm)-Mercapto-phenyl-[2.4.6-trimethyl-phenyl]-methan (10): Darstellung analog dem von Klenk, Suter und Archer⁴⁶) beschriebenen Verfahren. Man erhielt 53% einer blaßblauen Flüssigkeit, Sdp._{0.2} 130–132°, die beim Stehenlassen an der Luft kristallisierte: Schmp. 52–53° (Äther). NMR (CS₂): ca. 2.8 (Phenyl-H), 3.30 (H_{Ar}), 4.28 (Methin-H, d, J = 6 Hz), 7.81 (4-CH₃), 7.91 (2- und 6-CH₃), 8.06 (SH, d, J = 6 Hz).

C16H18S (242.4) Ber. C 79.29 H 7.49 S 13.22 Gef. C 79.20 H 7.21 S 13.21

 (\pm) -Phenyl-[2.4.6-trimethyl-phenyl]-acetonitril (11)⁴⁷): NMR (CCl₄): 2.90 (Phenyl-H), 3.17 (H_{Ar}), 4.48 (Methin-H), 7.72 (4-CH₃), 7.78 (2- und 6-CH₃).

 (\pm) -1-Phenyl-1-[2.4.6-trimethyl-phenyl]-äthan (12)⁴⁸): NMR (CS₂): 2.95 (Phenyl-H), 3.35 (H_{At}), 5.49 (Methin-H, quart, J = 7.5 Hz), 7.83 (4-CH₃), 7.98 (2- und 6-CH₃), 8.44 (α -CH₃, d, J = 7.5 Hz).

 (\pm) -Chlor-phenyl-[2.4.6-trimethyl-phenyl]-methan (13)⁴⁹): Schmp. 33.5-34.5° (Lit.⁴⁹): <50°). NMR (Aceton-d₆): 2.69 (Phenyl-H), 3.10 (H_{Ar}), 3.21 (Methin-H), 7.75 (4-CH₃), 7.80 (2- und 6-CH₃).

 (\pm) -Brom-phenyl-[2.4.6-trimethyl-phenyl]-methan (14): Zu 30.0 g (133 mMol) 9 in 100 ccm trockenem Benzol wurde eine Lösung von 40.0 g (148 mMol) Phosphortribromid in 50 ccm Benzol derart getropft, daß die Mischung unter Rückfluß siedete. Man kühlte nach beendeter

 ⁴³⁾ R. Y. Levina, V. N. Kostin, P. A. Gembitskii, S. M. Shostakovskii und E. G. Treshchova, J. Gen. Chem. USSR 32, 1363 (1962), C. A. 58, 4442 g (1963).

⁴⁴⁾ F. Asinger und G. Lock, Mh. Chem. **62**, 323 (1933).

⁴⁵⁾ A. G. Davies, J. Kenyon, B. J. Lyons und T. A. Rohan, J. chem. Soc. [London] 1954, 3474.

⁴⁶⁾ M. M. Klenk, C. M. Suter und S. Archer, J. Amer. chem. Soc. 70, 3846 (1948).

⁴⁷⁾ J. G. Burr und L. S. Ciereszko, J. Amer. chem. Soc. 74, 5426 (1952).

 ⁴⁸⁾ R. C. Fuson, M. D. Armstrong, W. E. Wallace und J. W. Kneisley, J. Amer. chem. Soc.
 66, 681 (1944).

⁴⁹⁾ P. S. Bailey und J. G. Burr, J. Amer. chem. Soc. 75, 2951 (1953).

Zugabe ab und hydrolysierte überschüssiges PBr3 mit Wasser. Die Benzol-Phase wurde abgetrennt und über Na₂SO₄ getrocknet. Nach dem Abziehen des Lösungsmittels und Vakuumdestillation (Sdp.0.5 136-138°) erhielt man 28.5 g (74%) 14, das nach einem Monat kristallisierte: Schmp. 36-39°. NMR (CDCl₃): 2.73 (Phenyl-H), 3.15 (HAr und Methin-H), 7.73 (4-CH₃), 7.80 (2- und 6-CH₃).

C₁₆H₁₇Br (289.2) Ber. C 66.44 H 5.93 Br 27.63 Gef. C 66.59 H 6.02 Br 27.57

5-Chlor-1.3-dimethyl-4-isopropyl-benzol (15): Zu 10 g 98 proz. Schwefelsäure wurde innerhalb von 1.5 Stdn. bei 80-90° ein Gemisch von 6.40 g (107 mMol) Propanol-(2) und 14.05 g (100 mMol) 5-Chlor-1.3-dimethyl-benzol⁵⁰⁾ getropft. Anschließend rührte man 1 Stde. bei 85°, goß auf Eis, extrahierte mit Äther, wusch die Ätherlösung mit Wasser und zog nach Trocknen über Na₂SO₄ das Lösungsmittel ab. Der Rückstand wurde über eine 15-cm-Vigreux-Kolonne destilliert. Die Fraktion mit dem Sdp.14 114-118° (0.72 g) enthielt nach dem NMR-Spektrum etwa 80% 15 und ca. 20% 5-Chlor-1.3-dimethyl-2-isopropyl-benzol. Durch präparative Gaschromatographie (Aerograph Autoprep A-700, 6-m-SE-30-Säule, 100 ccm $H_2/Min.$, 150°) erhielt man 0.22 g 15, das laut NMR noch etwa 5% des Isomeren enthielt. NMR (CS₂): 3.13 und 3.27 (HAr, Kopplung nicht aufgelöst), 6.52 (Methin-H, sept, J = 7 Hz), 7.69 (3-CH₃), 7.81 (1-CH₃), 8.68 (α -CH₃, d, J = 7 Hz).

C11H15Cl (182.7) Ber. C 72.32 H 8.28 Cl 19.40 Gef. C 72.74 H 8.31 Cl 19.20

3-Brom-5-nitro-1-methyl-2-isopropyl-benzol (16) und 4-Brom-5-nitro-1-methyl-2-isopropylbenzol (22): 7.9 g (39 mMol) 21 und 6.7 g (22 mMol) Silber(1)-sulfat wurden in 35 ccm konz. H₂SO₄ und 4 ccm Wasser suspendiert. Unter Rühren und Kühlen mit Eiswasser tropfte man 2.4 ccm (46 mMol) Brom innerhalb von 50 Min. zu. Nach 3stdg. Rühren bei etwa 13° goß man auf Eis, extrahierte mit CHCl₃, filtrierte vom Silberbromid ab, trocknete den Auszug über Na_2SO_4 und zog das Lösungsmittel ab. Man erhielt ca. 8 g eines braunroten Öles, das in Pentan aufgenommen wurde. Beim Kühlen mit Methanol/Trockeneis fielen Kristalle. die aus Petroläther ($40-60^{\circ}$) umkristallisiert wurden: Schmp. $50-52^{\circ}$, nach dem NMR-Spektrum (CS₂) 22: 2.32 und 2.41 (HAr, keine erkennbaren Kopplungen), 6.80 (Methin-H, sept, J=7 Hz), 7.58 (1-CH₃), 8.72 (α -CH₃, d, J=7 Hz).

> C₁₀H₁₂BrNO₂ (258.1) Ber. C 46.53 H 4.69 Br 30.96 N 5.42 Gef. C 46.72 H 4.80 Br 31.13 N 5.17

Aus der Mutterlauge wurde 16 durch präparative Gaschromatographie (Aerograph Autoprep A-700, 3-m-Säule C-Wax-20-M, 110 ccm H₂/Min., 155°) auf ca. 70% angereichert. Der Rest bestand laut NMR-Spektrum aus ca. 25% 22 und 5% einer weiteren Beimengung. NMR (CS₂, Signale von 16): 1.88 und 2.15 (H_{Ar}, $J_{AB} = 2.5$ Hz), 6.24 (Methin-H, sept, J = 7 Hz), 7.47 (1-CH₃), 8.60 (α -CH₃, d, J = 7 Hz).

> C₁₀H₁₂BrNO₂ (258.1) Ber. C 46.53 H 4.69 Br 30.96 N 5.42 Gef. C 46.78 H 4.93 Br 31.19 N 4.89

3-Brom-2.4.6-triisopropyl-toluol (17)⁵¹): NMR (CS₂): 3.08 (HA_T), 6.59 und 6.90 (Methin-H, sept, J = 7 Hz), 7.69 (1-CH₃), 8.64 (2- α -CH₃, d, J = 7 Hz), 8.81 (4- und 6- α -CH₃, d, J = -77 Hz).

2-[2-Methyl-naphthyl-(1)]-propanol-(2): Die Grignard-Verbindung aus 80.0 g (0.36 Mol) 1-Brom-2-methyl-naphthalin und 8.8 g (0.36 Mol) Magnesium-Spänen in Äther wurde mit 16.8 g (0.29 Mol) Aceton umgesetzt. Nach üblicher Aufarbeitung verblieb ein Kristallbrei.

⁵⁰⁾ A. Klages, Ber. dtsch. chem. Ges. 29, 310 (1896).

⁵¹⁾ O. S. Akkerman, Recueil Trav. chim. Pays-Bas 86, 1018 (1967).

aus dem durch zweimaliges Umkristallisieren aus Petroläther $(60-70^\circ)$ 14.0 g (19%) farblos erhalten wurden: Schmp. 114–115°. NMR (CDCl₃): 2.1–2.9 (H_{Ar}), 7.38 (2-CH₃), 7.98 (OH), 8.15 (α -CH₃).

C14H16O (200.3) Ber. C 83.96 H 8.05 Gef. C 83.67 H 8.12

2-Methyl-1-isopropenyl-naphthalin: 12.8 g (64 mMol) obigen Carbinols wurden mit 1 g geschmolzenem und gepulvertem Kaliumhydrogensulfat sowie einer Spatelspitze Hydrochinon unter 85 Torr auf 240° erhitzt. Dabei destillierten Wasser und das gewünschte Produkt über (Sdp.85 175-185°). Das Destillat wurde in Äther aufgenommen und mit Natronlauge und Wasser gewaschen. Nach Trocknen über Na₂SO₄ und Abziehen des Äthers blieben 8.8 g hellgelbes Öl zurück. Redestillation lieferte 6.5 g (66%) 2-Methyl-1-isopropenyl-naphthalin, Sdp._{0.2} 84--85°, n_{25}^{25} 1.6002, farblose Flüssigkeit. NMR (CCl₄): 2.0-2.9 (H_{Ar}), ca. 4.5 und 5.1 (olefin. Protonen, m), 7.62 (2-CH₃), 7.96 (α -CH₃, schwach aufgespalten).

2-Methyl-1-isopropyl-naphthalin (18): Beim Versuch, 2-Methyl-1-isopropenyl-naphthalin in Eisessig mit Wasserstoff an Platin(IV)-oxid bei 20° und 1 at zu hydrieren, war innerhalb von 5 Tagen keine Wasserstoff-Aufnahme festzustellen⁵²). Deshalb unterwarf man die Verbindung der Hydroborierung: Zu 3.3 g (18 mMol) 2-Methyl-1-isopropenyl-naphthalin und 0.35 g (9 mMol) Natriumborhydrid, in 15 ccm Diäthylenglykol-dimethyläther (Diglyme) gelöst, wurde unter Stickstoff innerhalb von 45 Min. die Lösung von 1.7 g (23 mMol) Bor-fluorid-ätherat in 5 ccm Diglyme getropft. Man erwärmte 1 Stde. auf 50°, gab 25 ccm Eisessig zu und kochte 2 Stdn. unter Rückfluß, goß in 300 ccm Wasser, zog dreimal mit Cyclohexan aus, wusch den Extrakt mit Natriumhydrogencarbonat-Lösung und Wasser und trocknete über Na₂SO₄. Die Destillation ergab 1.4 g (43%) 18, Sdp._{0.4} 88-89°, n_D^{24} 1.5940, als farblose Flüssigkeit, die sich bei längerem Stehen gelb färbte. NMR (CS₂): 1.8-3.0 (H_{Ar}), 6.22 (Methin-H, sept, J = 7 Hz), 7.54 (2-CH₃), 8.51 (α -CH₃, d, J = 7 Hz).

C14H16 (184.3) Ber. C 91.25 H 8.75 Gef. C 91.39 H 8.57

4-Nitro-1.3.5-trimethyl-2-cyclohexyl-benzol (19): 19 wurde analog Adams und Dix^{53} aus 4 dargestellt: Ausb. 28%, schwachgelbe Kristalle, Schmp. 101–103° (Äther). NMR (CCl₄): 3.17 (H_{Ar}), 7.63, 7.78 und 7.86 (CH₃), ca. 7.2 und 7.8–9.0 (Cyclohexyl-H).

C15H21NO2 (247.3) Ber. C 72.81 H 8.56 N 5.66 Gef. C 73.06 H 8.54 N 5.88

4-Nitro-2-methyl-1-isopropyl-benzol (21): Analog 1. c.⁵⁴) wurde zur Lösung von 8.65 g (229 mMol) Natriumborhydrid in 200 ccm Dimethylsulfoxid (über CaH₂ dest.) unter Rühren innerhalb von 20 Min. bei Raumtemp. die Lösung von 22.8 g (107 mMol) 4-Nitro-2-chlor-methyl-1-isopropyl-benzol (20)⁵⁵) in 500 ccm absol. Dimethylsulfoxid getropft. Anschließend rührte man 3 Stdn. bei Raumtemp., versetzte mit dem doppelten Volumen Wasser und extrahierte zweimal mit Cyclohexan. Nach Trocknen über Na₂SO₄ und Abziehen des Lösungsmittels blieben 15.8 g (82%) Öl zurück, das im Kühlschrank zu blaßgelben Kristallen erstarrte: Schmp. 33-34° (n-Pentan). NMR (CCl₄): 1.9-2.2 und ca. 2.65 (H_{Ar}, m), 6.76 (Methin-H, sept, J = 7 Hz), 8.75 (α -CH₃, d, J = 7 Hz).

C10H13NO2 (179.2) Ber. C 67.02 H 7.31 N 7.81 Gef. C 66.92 H 7.44 N 7.80

Rechenprogramme: Für die Bestimmung des Flächenverhältnisses zweier NMR-Signale, die wegen Überlappung nicht elektronisch integriert werden konnten, wurde ein Rechen-

⁵²⁾ Vgl. die analogen Befunde am I-Cyclohexenyl-naphthalin, J. W. Cook und C. A. Lawrence, J. chem. Soc. [London] **1936**, 1431.

⁵³⁾ R. Adams und J. S. Dix, J. Amer. chem. Soc. 80, 4579 (1958).

⁵⁴⁾ R. O. Hutchins, D. Hoke, J. Keogh und D. Koharski, Tetrahedron Letters [London] 1969, 3495.

⁵⁵⁾ W. Polaczkowa und N. Porowska, Roczniki Chem. **31**, 1207 (1957); C. A. **52**, 9977d (1958).

programm entwickelt, das die Auftrennung der Summe der Absorptionen in die Einzelkurven gestattet. Das Programm arbeitet nach einem iterativen Verfahren der kleinsten Fehlerquadrate und paßt die Parameter zweier Lorentz-Kurven gleicher Halbwertsbreite an das experimentelle Spektrum an. Einzugeben sind die Koordinaten von Punkten der gemessenen Summenkurve sowie geschätzte Werte für die Intensitäten, die Halbwertsbreite und die Differenz der chemischen Verschiebungen. – Für die Energieberechnungen $\alpha.\alpha.o.o'$ -tetrasubstituierter Toluole wurde ein weiteres Rechenprogramm verfaßt, welches für eine Konformation mit gegebenem Interplanarwinkel δ die günstigste Geometrie durch Variation der C_{α} -Aryl-Bindungslänge und der Valenzwinkel an den α -, o- und o'-Kohlenstoffatomen innerhalb festzulegender Grenzen ermittelt. Für alle Kombinationen der verschiedenen Werte der einzelnen Variablen werden die zugehörigen Spannungsenergien E berechnet. Für die energetisch günstigste Kombination werden die geometrischen Daten und eine Aufschlüsselung der Teilbeträge von E ausgedruckt. An Eingabedaten sind erforderlich: die Bindungslängen und Valenzwinkel, die während der Rechnung konstant bleiben, die C_{α} -Aryl-Bindungslänge l_0 und die variablen Winkel ω_0 in "ungespanntem" Zustand, die zugehörigen Kraftkonstanten und die Konstanten der Lennard-Jones-Potentiale für die nichtbindenden Wechselwirkungen. Beispielsweise wurden in einer ersten Rechnung für die Konformation von 3 mit $\delta = 0^{\circ}$ den vier Variablen je neun Werte zugeordnet. Die Zeit für die Berechnung und den Vergleich der Spannungsenergien der resultierenden 94 = 6561 Kombinationen betrug etwa 3.5 Minuten. - Beide Programme sind in FORTRAN IV geschrieben. Die Rechnungen wurden an der Anlage IBM/360-44 des Rechenzentrums der Universität Heidelberg durchgeführt.

[321/70]